EVALUATION OF SOME SWEET CHERRY CULTIVARS TO WINTER FREEZE IN DIFFERENT AREAS OF ROMANIA

Adrian ASĂNICĂ, Dorel HOZA, Valerica TUDOR, Georgeta TEMOCICO

University of Agricultural Sciences and Veterinary Medicine, Bucharest, 59 Marasti, District 1, 011464, Bucharest, Romania, Phone, Fax: +40 21 318 36 36, E-mail: asanica@gmail.com

Corresponding author email: asanica@gmail.com

Abstract

A very large number of sweet cherry cultivars grafted on different rootstocks was tested for freeze injuries in the winter of 2011/2012. The cultivars evaluated were Van, Celeste, Lapins, Kordia, Giant Red, Ferrovia, Early Red, Firm Red, Skeena, New Star, Regina grafted on PHLC rootstock in Istrita Nursery Station; Van and Stella on Prunus mahaleb L. in Moara Domneasca Didactic Farm; Ferrovia, Lapins, Celeste, Vega, Skeena, Early Red, New Star, Kordia, Mora di Vignola, Firm Red, Giant Red, Katalin, Ulster, Sam, B. Burlat, Boambe de Cotnari, Hedelfinger, Germersdorf, Van, Rivan, Regina, Giorgia grafted on PHLC, Colt, CAB6P, CAB11E and Prunus mahaleb L. in USAMV Bucharest Experimental Field. The wood hardness of the cultivars was assessed considering the branch types and the position in the crown. Frost hardiness results indicate a wide spectrum of cultivar resistance in terms of winter damages between 9.98% to 63.92% in Istrita region, 1.96% to 48.25% in Bucharest and Moara Domneasca area. The most affected by frost was Skeena at Istrita and Germersdorf in Bucharest.

Keywords: sweet cherry, frost injuries, hardiness evaluation

INTRODUCTION

The benefits of the sweet cherry (*Prunus avium* L.) consumption and fruit growing are well known worldwide [4]. Because of his importance, many producers are trying to adapt the new release cultivars [9] and rootstocks [1] in different regions in order to maximize the quality and yield of fruits [5].

A lot of remarkable sweet cherries varieties recently introduced coming from different breeding conditions [9] have abroad origin. In the new concept of european market and globalization, sweet cherry productions should come from cultivars more homogenous [2] with standard required quality.

Due to a lack of data regarding their performance in the traditional and non traditional Romanian cultivation area of sweet cherry, many of these cultivars could be affected by winter frosts and may register serious production losses in the unfavourable years. The climate changes problems should not be ignored in this case and might be a subject for further researches.

The temperature fluctuations in winter and the sudden amplitudes are the main cause for frost

injuries [7] in the south-eastern part of Europe where the absolute minimum temperature is not the major factor involved for cherry. The effect of low temperatures is also expressed by cultivars according to genetic heritage [2] and rootstock used. For instance, Gisela 5 one of the most recommended and used dwarf rootstock for cherry is mentioned by some authors [8, 10] as hardier than Mazzard. Other authors [7] found that 'Burlat' grafted on Gisela 5 recorded much severe frost injuries than *P. mahaleb* L. seedlings or Weiroot rootstock series.

A research conducted on many sweet cherry cultivars from Fruit Genebank Dresden-Pilnitz show no correlation between frost and diseases resistance of the cultivars, so this issue must be approached separately [3].

MATERIAL AND METHOD

In order to evaluate the hardiness of some sweet cherry cultivars grafted on different rootstocks in the condition of 2011/2012 winter, three locations were choosed for test. The cultivars evaluated were Van, Celeste, Lapins, Kordia, Giant Red, Ferrovia, Early Red, Firm Red, Skeena, New Star, Regina grafted on PHLC rootstock in Istrita Nursery Station; Van and Stella on *Prunus mahaleb* L. in Moara Domneasca Didactic Farm; Ferrovia, Lapins, Celeste, Vega, Skeena, Early Red, New Star, Kordia, Mora di Vignola, Firm Red, Giant Red, Katalin, Ulster, Sam, B. Burlat, Boambe de Cotnari, Hedelfinger, Germersdorf, Van, Rivan, Regina, Giorgia grafted on PHLC, Colt, CAB6P, CAB11E and *Prunus mahaleb* L. in USAMV Bucharest Experimental Field (photo 4).

The wood hardiness of the cultivars was assessed considering the branch types and the position in the crown. From each cultivar it were collected spur, medium and long branches, detached from first level and upper half of the crown (second level). At the end of January and in the first decade of February, it were analyzed 100 floral buds on each variant and it was calculated the percentages of losses. As statistical method it was used Duncan's multiple range test ($P \le 0.05$) where means followed by the same letter in the same column are not significantly different.

RESULTS AND DISCUSSIONS

In the last time, in Romania as in other European countries, the climate changes are more often mentioned when pay attention to very low temperatures in winter or very hot summers with long periods of dryness.

The winter of 2011/2012 is one of the hard winter examples, when low temperatures have persisted for many days and the wind blew harder.

In the Istrita condition (table 1), the highest degree of frozen flower buds was recorded by Skeena (63,92%). The biggest losses were counted in the bazal part of the crown and the most affected type of branch was the medium one (90,91%). In the upper part of the tree, the percentages of damages were under 50% for the medium and long branches.

Not all of cultivars react like Skeena. For instance, Kordia tolerate quite well the low temperatures and has numbered only 9,98% frost buds/tree.

Cultivar	I level (below)				II level (upper)				Mean
	Spurs	Medium	Long	Average I	Spurs	Medium	Long	Average	per tree
		branches	branches	level		branches	branches	II level	
Van	68.29a	60.00d	57.30b	61.87b	22.95f	20.29de	44.93a	29.39d	45.63b
Celeste	7.73h	53.33e	14.04g	25.03g	1.56h	0	0.00	0.52h	12.78g
Lapins	42.18c	37.25g	32.31d	37.25e	6.21h	8f	10.09f	8.10gh	22.67f
Kordia	13.76g	9.92j	2.38i	8.68j	12.58g	7.31f	13.92e	11.27g	9.98h
Giant Red	28.92d	61.36c	28.33ef	39.54d	38.02c	18.46e	5.61g	20.70f	30.12e
Ferovia	20.83f	7.37j	11.43h	13.21i	27.78e	25.53c	43.30b	32.20c	22.71f
Early Red	28.48d	67.21b	29.79e	41.83c	3.85h	9.09f	10.37f	7.77gh	24.80f
Firm Red	43.33c	35.53h	27.42f	35.43f	43.33b	35.52b	27.42c	35.43b	35.43c
Skeena	65.52b	90.91a	77.55a	77 .99 a	58.57a	45.45a	45.52a	49.85a	63.92a
New Star	42.51c	40.58f	45.16c	42.75c	31.21d	21.84d	19.44d	24.17e	33.46d
Regina	26.72e	26.72i	15.38g	22.94h	6.77h	4.80f	7.89fg	6.49h	14.72g
Media	35.30	44.56	31.01	36.96	<i>22.98</i>	17.84	20. 77	20.54	28.75

Table 1. Floral buds losses due to 2011/2012 winter frost at some sweet cherry cultivars grown in Istrita, Buzau (%)

* means followed by the same letter in the same column are not significantly different.

With no significant differences, Lapins, Ferrovia and Early Red positioned in the "*under 30*%" group. According to Kolesnikov [6], cited by Budan S. [2], the sweet cherry production started to decrease only when the flowering buds were lost in a higher percentage than 30%. Other cultivars with a good resistance that recorded under 35% losses are Celeste, Regina, New Star and Giant Red.

The analyze of the frost injuries depending on branch type (fig. 1) is revealing the fact that the losses are linked with genetic information of the cultivar and with flowering bud formation on the fruit branches.

Fig. 1. The flower buds losses at some sweet cherry cultivars depending on branch type (Istrita, %)

Position in the crown of the flowering buds is another element involved in the total percentage of bud losses. As it could be observed in the figure 2, the first level (from the ground to half of the tree height) is much affected by cold temperatures.

For Celeste, even the total injuries are minor, the higher share of the frozen flower buds was remarked in the first level of the crown.

As a general comment, we observed that the cultivars appreciated together (mean values) indicate the inferior part of the crown with susceptibility to the cold injuries.

In the experimental plot of USAMV Bucharest, the total frost buds percentage at cherry was smaller than in the Istrita Station field. Excepting Germersdorf (48,25%), Giant Red (45,74%), Skeena (34,4%) and Lapins (35,07%), all the sweet cherry cultivars proved a good tolerance to cold winter temperatures. The smallest percentages of flower buds destroyed by frost were noticed for Giorgia, Regina, Ulster, Rivan, Van, Mora di Vignola, Vega (table 2). The values did not exceed 10%.

Table 2. The flower buds losses by cold temperatures in the 2011/2012 winter of some sweet cherry cultivars in the experimental field of USAMV Bucharest (%)

			-	
Cultivar	Spur	Medium	Long	Mean
		branch	branch	(tree)
Ferrovia	26.92g	9.52ghij	16.67gh	17.70h
Lapins	43.55d	18.18f	43.48b	35.07d
Celeste	72.41b	7.69hij	15.00hi	31.70e
Vega	10.71i	12.50g	0.00	7.74j
Skeena	35.90f	61.11a	18.18fg	38.40c
Early Red	55.56c	12.82g	34.78c	34.39d
New Star	13.56i	20.51ef	4.17k	12.75i
Kordia	36.00f	10.81gh	25.00d	23.94f
Mora di Vignola	12.50i	10.00ghi	0.00	7.50j
Firm Red	39.13e	18.87f	2.38k	20.13g
Giant Red	87.50a	36.67b	13.04ij	45.74b
Katalin	8.89i	35.06c	31.03d	25.00f
Ulster	6.38i	0.00	7.14k	4.51j
Sam	19.81h	19.44f	11.11j	16.79h
Burlat	4.35i	4.76ij	20.00f	9.70ij
B de Cotnari	14.47i	24.53d	19.05fg	19.35gh
Hedelfinger	6.02i	22.22e	0.00	9.42ij
Germersdorf	12.99i	61.76a	70.00a	48.25a
Van	3.37i	17.65f	0.00	7.01j
Rivan	1.41i	5.41ij	11.54j	6.12j
Regina	2.70i	3.64j	0.00	2.11j
Giorgia	5.88i	0.00	0.00	1.96j
Media	23.64	18.78	15.57	19,33

* Duncan's multiple range test ($P \le 0.05$)

As in the Istrita case, the branch type influenced the number of frozen floral buds at the cherry trees in Bucharest. Bigger damages were observed for floral buds on the spur branches at Celeste, Early Red, Giant Red, Ferrovia and Kordia; on medium branches at Skeena, Vega, New Star, Katalin, Hedelfinger, Boambe de Cotnari and Van); on long branches at Ulster, Burlat, Germersdorf and Rivan (fig. 3).

Fig. 3. Flower bud losses of some different sweet cherry cultivars in the USAMV Bucharest experimental field depending on branch type (%)

It is important to say that the age of the tree, genetic distribution and share of the branch type in the crown as well as the physiological and biochemical balance of the tree in the previous year, could lean towards a higher or lower percentage of buds lost due to low temperatures in the winter.

In the Didactic Farm of Moara Domneasca, the main cultivars have been affected by cold temperatures in the 2011/2012 winter too, but the bud losses did not overcome significantly the limit accepted as regular. Stella and Van recorded superior values of frozen flower buds on medium branches (table 3).

Table 3. The frost injuries degree of the flower buds in the winter of 2011/2012 at main sweet cherry cultivars in the Didactic Farm of Moara Domneasca (%)

Cultivar	Spurs	Medium branch	Mean	
Stella	5.80a	12.00b	8.90b	
Van	27.38b	34.25a	30.81a	
Media	16,59	23,12	19,86	

* Duncan's multiple range test ($P \le 0.05$)

Ensembling the average data regarding the floral buds losses due to the cold temperatures during the last winter in each of the studied areas (figure 4), we found that percentages of the cherry injuries are unable to compromise the yield of this year.

Fig. 4. The average percentages of affected flower buds in the three experimental centers: |Istrita Buza, USAMV Bucharest and Didactic Farm Moara Domneasca

Unfortunately, later in the Spring, the temperatures oscillations after bud burst and especially the lower temperature registered in the morning of April, 10 in Istrita Buzau region (-6° C) destroyed all the flowers (photo 1,2,3) and fully compromise the cherry production in this year.

The other two centers haven't reported additional losses caused by the late spring frosts.

Photo 1. Browning of the floral organs due to negative temperatures occured in the morning of April, 10 in Istrita Buzau

Photo 2. Transversal sections reveal floral organ damage by frost (Moara Domneasca, 2012)

Photo 3. Frost damage at sweet chery fruiting buds transversal and longitudinal section view

Photo 4. Sweet cherry experimental plot in high density system at USAMV Bucharest (2012)

CONCLUSIONS

The lasting low temperatures in the 2011/2012 winter produced frost damages at the floral buds of sweet cherry cultivars grown in Istrita, Bucharest and Moara Domneasca regions differentially.

9.98% to 63.92% of floral buds affected by frost was recorded in Istrita region and 1.96% to 48.25% in Bucharest and Moara Domneasca area.

The most affected by winter frost was Skeena (63,92%) at Istrita and Germersdorf (48,25%) in Bucharest.

Lower part of the crown was much exposed to the low temperatures and registered a higher percentage of floral buds losses, respectively with 28,5% more than the upper half of the crown.

Frost injuries depend on branch type. Floral bud losses are linked also with genetical heritage of the cultivar.

ACKNOWLEDGEMENTS

This work was supported by UEFISCDI, Project PD-85 193/2010.

REFERENCES

[1] Blažková, J., Hlušičková, I., 2002. Testing of wood hardiness to winter freezes in selections from progenies of Cerapadus × Prunus avium L. crosses. Hort. Sci. (Prague), 29 (2002): 133-142

[2] Budan, S., Butac M., Chitu E., 2005. *Evaluation of the winter hardiness of some cherry and plum varieties under 2004/2005 climatic conditions*. Lucrari ştiintifice ale USAMV "Ion Ionescu de la Brad", Iaşi, Vol. 1(48), CD, I.S.S.N. 1454-7376: 83-88.

[3] Fischer, M. and Hohlfeld, B. 1998. *Resistance Tests In Sweet Cherries*. Acta Hort. (ISHS) 468:87-96

[4] Jänes H., P. Ardel, K. Kahu, K. Kelt and A. Kikas, 2010. Some biological properties and fruit quality parameters of new sweet cherry cultivars and perspective selections, Agronomy Research 8 (Special Issue III), 583–588.

[5] Kappel, F., Fisher-Fleming, B. & Hogue, E. 1996. *Fruit characteristics and sensory attributes of*

an ideal sweet cherry. HortScience 31 (3), 443-446

[6] Kolesnikov, M.A., Kirichek, I.M., 1975. Effect of meteorological factors on yielding capacity of sour and sweet cherry in the central part of Kuban. Izd. Urojai, Kiev.

[7] Lichev V. and PapachatzisA., 2006. *Influence of ten* rootstocks on cold hardiness of flowers of cherry cultivar 'Bigarreau Burlat'. Sceintific Works of the Lithuanian Institute of Horticulture and Lithuanian University of Agriculture. Sodininkyste IR Darzininkyste. 25(3). 296-301.

[8] Lynn E. Long and Clive Kaiser. 2010. *Sweet cherry rootstocks for the Pacific Northwest*. A Pacific Northwest Publication, PNW 619, September 2010.

[9] Sansavini, S. and Lugli, S., 2008. *Sweet Cherry Breeding Programs In Europe And Asia*. Acta Hort. (ISHS) 795:41-58.

[10] Sitarek, M., Z. Grzyb, 1998. Frost injuries of sweet cherry and plum after winter 1996/97. - Journal of Fruit and Ornamental Plant Research, 6:1, 15-22.