MANIFEST OF THE PRODUCTIVE POTENTIAL OF SOME TOMATO HYBRIDS WITH DETERMINED GROWTH CULTIVATED IN COLD SOLARIUMS UNDER THE IMPACT OF FLOWER STIMULATION AND FECUNDATION METHODS AND OF DIFFERENT MODERN FERTILIZERS

A. HORGOS¹, Alexandra BECHERESCU¹, D. POPA¹, Anișoara IENCIU¹, Anca DRĂGUNESCU¹, L. RUSU²

¹Banat's University of Agricultural Sciences and Veterinary Medicine, Faculty of Horticulture and Forestry, Fruit Culture, Calea Aradului 119, 300645, Timisoara, Romania, Phone: 0256 277006, fax: 0256 277263 ²Family association

Corresponding author email: horgos a@yahoo.com

Abstract

In the past years, as a result of fuel price increase, there was registered a regression of surfaces cultivated with vegetables in greenhouses or solariums. Private growers started to cultivate vegetables in cold solariums, reducing by this the costs of obtaining productions, meaning heating costs. But there were necessary some other operations in order to maintain the productions that they would have obtained in conditions of heat and to compensate the decrease of early productions and the income costs. In this article we present the impact of some modern technology operations, which can determine high yields of two tomato hybrids with determined growth Magnus F1 and Maximus F1, known as being very good cultivated in cold solariums. Stimulation was done with Tomato-Stim, by natural pollination with bumble-bees (Natupol) and with Bionex (foliar fertilizer with plant extracts) all compared to a control variant where it occurred natural pollination. At the same time, there were applied two types of fertilizer – Agriplant and Kemira. Tomato-Stim gave good quantitative yields, while Natupol gave good qualitative yields. The productions obtained after applying Kemira fertilizer were with 15.5% till 15.9% higher than those obtained after applying Agriplant fertilizer. Both hybrids, Magnus F1 and Maximus F1 are valuable considering the quantity, but also the Extra and I^{et} quality productions, but Maximus F1 gave higher productions than Magnus F1 tomato hybrid.

Keywords: growers, solariums, production, tomato, hybrids.

INTRODUCTION

Price increase of fuel and of any kind of energy in general, led to the impossibility of growing vegetables in heated protected spaces by the vast majority of private farmers. There have been and continue to be affected small producers, especially those who ventured to cultivate vegetables as starters in the profession and not always have enough financial capital to ensure their start.

For this reason many farmers have shifted to growing vegetables in unheated rooms, solariums is most handy. But to increase the profitability of vegetable crop in case of tomatoes removing the heating costs is not enough, but also improving those technology links that offset the influence of lack of heating, which led to a big decrease in early production, but also of its quality of the first part of the harvest period.

"Modernization" of a technology culture, be it vegetable cultivation under shelter, meaning that some basic technological links (stimulation fertilization of flowers, modern types of fertilizers and hybrid performance), require improved of their depth, so that the effect produced to determine the profitability of the production as the defining elements, namely the productivity, quality and economic efficiency.

Hybrid, by its characteristics, nearby with the vegetation management system by changing or not axial system architecture of the plant and improving irrigation system and fertilization applied, can help achieve the goal of this profitable crop of tomatoes in the new conditions.

The contribution of the factors listed above that are competing to elucidating the problem taken in the survey in interpreting the complex relationships created between them, was studied in terms of their impact on improving production quantity and quality – superior, extra and Ist quality.

MATERIAL AND METHOD

This study upon tomato culture's profitability developed in Agrişu Mare locality, Târnova district. Arad County, an area where vegetables started to be cultivated on larger and larger surfaces, especially tomatoes and peppers, but also cabbage and cauliflower, by beginner private growers, who have a certain professional experience. The family association has almost 0.25 ha of cold solariums. The experiment had two tomato hybrids, relatively new in culture, which are Magnus F1 from Sluis & Groot Novartis Company, Netherlands, and Maximus F₁ from De Ruiter Seeds (Siminis Company, Netherlands), both hybrids being sort of known by growers because of their qualities. Both hybrids were studied in terms of their productive potential and quality manifestation under the influence of application of two fertigation systems (modern chemical fertilizers Agriplant and Kemira) and the use of various methods to stimulate the fertilization of flowers.

The culture was established in the period 20-25th March 2011 in cold solariums, using 65 days seedlings at a 3.2 plants/m² density. In this purpose, there was organized a polifactorial experiment, in which the experimental factors were:

Factor A – Method of stimulating flower fecundation

 $a_1 - Mt$ – control, natural pollination (use of mechanical methods)

 a_2 – Biostimulation with synthetic stimulants – Tomato-Stim

a₃ – Natural pollination with bumble-bees (Natupol)

a₄ – Biostimulation with Bionex (foliar fertilizer with plants extract)

Factor B – Fertilization system

 b_1 – Modern fertilization with chemical fertilizer Agriplant (basic fertilization with rich soil and Agriplant 1-4 in vegetation period) b_2 – Modern fertilization with chemical fertilizer Kemira (basic fertilization with Cropcare and Ferticare in vegetation period)

Factor C – the hybrid

 c_1 - Magnus F_1

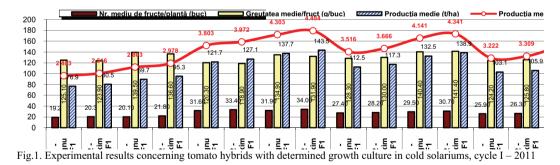
 c_2 - Maximus F_1

The culture technology consisted in:

- drip irrigation through Netafim irrigation system (Israel);

- fertilization through drip irrigation system (fertirrigation) using Agriplant and Kemira (complex modern fertilizers for basic, starter and phasial fertilizations, with microelements for fertilizing irrigation and foliar fertirrigation).

This study had as goal to determine the profitability possibilities for tomatoes culture in cold solariums in the new competitive market. using as biological material the newest hybrids with determined growth that started to be cultivated in forced and protected spaces. At the same time there was observed their behavior as productive potential and production's quality, using extra-root fertilizers for completing root nutrition assured by completely soluble modern fertilizers Agriplant and Kemira.


RESULTS AND DISCUSSION

Tables 1 and 2 and figure 1 show the quantitative and qualitative obtained productions, and the share of extra and Ist quality productions under the impact of factor A (method of stimulating flower fecundation) and factor B (b_1 and b_2), fertilization with Agriplant and Kemira. The average number of fruits/plant is higher for both hybrids in case of b_2 , being with almost 1.2-2.3 fruits higher than in b_1 . At the same time, the average weight/fruit is higher in case of Kemira fertilization (b_2) with 11.7-13.6g/piece.

	with	n determined growti	i cuiture in co	iu solaliuli	is, cycle I	- 2011					
Factor A	Factor B		Average no.of fruits/plant	A 11000 0 -		Ave	rage pro	age production			
(method of stimulating flower		Factor C (the hybrid)		Average weight/fruit (g/piece)	Kg/plant	t/ha	% than c ₁	of which Ist quality	extra and production		
fecundation)	n system)			(g/piece)			U1	t/ha	%		
		c1 - Magnus F1	19,2	125,1	2,403	76,9	100,0	61,6	80,1		
a ₁ - Control with natural pollination (mechanical methods)	b1-Agriplant	c2 - Maximus F1	20,3	123,9	2,516	80,5	104,7	66,2	82,2		
		Average c for $a_l x b_l$	19,8	124,2	2,459	78,7	102,3	63,9	81,2		
		c1 - Magnus F1	20,1	139,5	2,803	89,7	100,0	75,2	83,8		
	b2-Kemira	c2 - Maximus F1	21,8	136,6	2,978	95,3	106,2	83,2	87,3		
		Average c for a_1xb_2	21,0	137,7	2,891	92,5	103,1	79,2	85,6		
	Average of f	factor B for factor a ₁	20,4	131,1	2,675	85,6	*	71,6	83,6		
	b ₁ -Agriplant	c1 - Magnus F1	31,6	120,3	3,803	121,7	100,0	85,8	70,5		
		c2 - Maximus F1	33,4	118,9	3,972	127,1	104,4	95,0	74,7		
Towards Oding		Average c for a_2xb_1	34,5	119,6	3,888	124,4	102,2	90,4	72,7		
a ₂ - Tomato-Stim	b ₂ -Kemira	c1 - Magnus F1	31,9	134,9	4,303	137,7	100,0	97,9	71,1		
		c2 - Maximus F1	34,0	131,9	4,484	143,5	104,2	108,5	75,6		
		Average c for a ₂ xb ₂	33,0	133,2	4,394	140,6	102,1	103,2	73,4		
	Average of f	factor B for factor a ₂	32,7	126,6	4,141	132,5	*	96,8	73,1		
	b ₁ -Agriplant	c1 - Magnus F1	27,4	128,3	3,516	112,5	100,0	91,9	81,7		
a3- Natural		c2 - Maximus F1	28,2	130,0	3,666	117,3	104,3	97,7	83,3		
pollination with		Average c for a_3xb_1	27,8	129,2	3,591	114,9	102,1	94,8	82,5		
bumble-bees	b ₂ -Kemira	c ₁ - Magnus F ₁	29,5	140,4	4,141	132,5	100,0	114,2	86,2		
(Natupol)		c2 - Maximus F1	30,7	141,4	4,341	138,9	104,8	122,8	88,4		
		Average c for a_3xb_2	30,1	140,9	4,241	135,7	102,4	118,5	87,3		
	Average of f	factor B for factor a_3	29,0	135,0	3,916	125,3	*	106,7	85,2		
	b ₁ -Agriplant	c1 - Magnus F1	25,9	124,2	3,222	103,1	100,0	74,1	71,9		
		c2 - Maximus F1	26,3	125,8	3,309	105,9	102,7	78,7	74,3		
a Dianay		Average c for a ₄ xb ₁	26,1	125,1	3,266	104,5	101,4	76,4	73,1		
a ₄ - Bionex	b2-Kemira	c ₁ - Magnus F ₁	27,3	137,3	3,753	120,1	100,0	86,5	72,0		
		c2 - Maximus F1	27,2	139,8	3,803	121,7	101,3	94,1	77,3		
		Average c for a ₄ xb ₂	27,3	138,4	3,778	120,9	100,7	90,3	74,7		
	Average of f	factor B for factor a ₄	26,7	131,9	3,522	112,7	*	83,4	74,0		

Table 1. Experimental results concerning tomato hybrids with determined growth culture in cold solariums, cycle I - 2011

Culture density: 32.000 plants/ha

The average production/ha obtained under the impact of b_2 (Kemira) of 122.4 t/ha is vastly superior to the influence of $b_1 - 105.6$ t/ha, with 15.9 % higher. This if the calculation was made for the average experience Mx₁, where it was also the control - natural pollination (a₁). For Mx₂, eliminating from the calculation values Mt – natural pollination (a₁), the values for b_1 (Agriplant) and b_2 (Kemira) increase to 114.6

t/ha (100%) for b_1 and 132.4t/ha (115.5%) for b_2 .

Considering extra and I^{st} quality productions under the impact of b_2 it was of 79.9 %, with 2.8 % more than in b_1 , of 77.1 %.

As a conclusion, we can say that Kemira fertilizer had a great impact, its benefits being observed both upon obtained quantitative and qualitative productions, and also the weight and the number of fruits/plant. Considering table 2 and figure 1 we can see that by interacting factor A with factor we obtain the same effects upon the production and its quality by fertilization with Kemira for both hybrids, of these two Maximus F1 being superior as obtained production -125.7 t/ha and quality -79.2% Extra + Ist quality production (101.8 t/ha).

Table 2. Synthesis of experimental results concerning tomato hybrids with determined growth culture
in cold solariums in conditions of using some modernized technological links

Exp	perin fact	nental	Average production for:																		
	Taci	.01		Facto	r C		Factor B						Factor A								
	A B C		B C	вс		1 deto		which		Of which		h E±L nn	ad				Of which E+I prod.				
А		в				% than	E+I I	orod.		% than	$\% a_{1-5}b_{1-$	01	wine	u ≞+i pi	0/.	% than	%a ₁₋₅		01		E+1 piou
		t/.		t/ha	a ₁₋₅	t/ha	%	t/ha	$a_{1-5}b_1$	2 than Mx1b1-2	t/ha	%	% than b1	% than a ₁ b ₁₋₂	t/ha	a ₁	than Mx ₁	t/ha	%	% than	% than Mx1
	c ₁	C.	76,9	89,8	61,6	80,1	ľ									r			a ₁		
		C ₂	80.5	94,0	66.2	82,2	78,7	100,0	74,5	63,9	81,2	100,0	100,0								
a_1	01	$a_1 x b_1$	78,7	91,9	63,9	81,2	,.	,-	,=	,.	,_	,-	,-								
		c ₁	89,7	104,8							85,6	100,0	75,1	71,6	83,6	100,0	79,9	74,9			
	b_2	c ₂	95,3	111,3	83,2	87,3	92,5	117,5	75,6	79,2	85,6	123,9	100,0								
		a_1xb_2	92,5	108,1	79,2	85,6															
Aver	rage l	B for a ₁	85,6	100,0	71,6	83,6	85,6	108,8	75,1	71,6	83,6	112,0	100,0								
		c ₁	121,7	91,8	85,8	70,5															
	b_1	c ₂	127,1	95,9	95,0	74,7	124,4	4 100,0	117,8	90,4	72,7	100,0	141,5								101,3
a_2		$a_2 x b_1$	124,4	93,9	90,4	72,7										116,2	96,8	73,1	135,2	108,0	
	1	c ₁	137,7	103,9 108,3	97,9	71,1	140.0	112.0	114.0	102.2	72.4	114.2		132,5	154,8						
	b ₂	$\frac{c_2}{a_3xb_2}$	143,5 140,6	108,5	108,5 103,2		140,6	113,0	114,9	103,2	/3,4	114,2	130,3								
4.00		$B for a_2$	140,6	100,1	96,8	73,4	132,5	106,5	116,2	96,8	73,1	107,1	135,9								
Aver	uge 1	c_1	112,5	89,8	91,9	81,7	152,5	100,5	110,2	90,0	/3,1	10/,1	155,9								
	b ₁	C ₁	112,3	93,6	91,9		114,9	100,0	108,8	94,8 8	82,5	100,0	148.4					7 85.2	149,0	119,1	
a ₃	U1	a_3xb_1	114,9	91,7	94,8	82,5					02,5	100,0	100,0 110,1	125.3	146,4 109,						111.6
u.,		C1	132,5	105,7	114,2	86,2	135,7	135,7 118,1 110,9 118,5 8	110,9	118,5 8						109.9	106,7				
	b ₂	C2	138,9	110,9	122,8						87,3 1	125,0 149,6	,-	.,	,.					,,	
	_	a_3xb_2	135,7	108,3	118,5	87,3															
Aver	rage l	B for a ₃	125,3	100,0	106,7	85,2	125,3	109,1	109,9	106,7	85,2	112,5	149,0								
		c1	103,1	91,5	74,1	71,9		5 100,0	99,0 76,			3,1 100,0	00,0 119,6					74,0	116,5	93,1	87,2
	b_1	c ₂	105,9	94,0	78,7		104,5			76,4	73,1										
a_4		$a_4 x b_1$	104,5	92,7	76,4	73,1															
	1	c ₁	120,1	106,6	86,5	72,0	120.0		00.0	00.2	747	110.0		112,7	131,7 98	98,9	83,4				
	b ₂	c ₂	121,7 120,9	108,0 107,3	94,1 90,3	77,3	120,9	115,7	98,8	90,3	74,7	118,2	114,0								
Ayan	000	$a_4 x b_2$ B for a_4	120,9	107,5	90,5 83,4		112,7	107,8	98,9	83,4	74,9	109,1	116,5								
Aver	uge I		103,6	98,0	78,4	75,6	112,/	10/,0	70,7	03,4	/4,9	109,1	110,5								
	b_1	c_1 c_2	103,0	101,9	84,4		105,6	100,0	92,6	81,4	77,1	100,0	127,4								
		b_1	107,7	101,9	81,4	77,1	105,0	100,0	92,0	01,4		,1 100,0 127,4									
a_5		c_1	120,0	97,9	93,5	77,9								ſ							
u5 (Mx1)	b_2	c_1 c_2	120,0	102,0	102,2	,	122,4	115,9	107,4	97,8	79,9	120.1	123.5	114.0	133.2	100,0	89.6	78.6	125.1	100.0	93,7
(MX1)		b_2	122,4	100.0	97,8	79,9		110,9	115,5 107,1	57,0	,0 /),)	, 120,1	20,1 125,5	,0		100,0	89,0	78,0	125,1	100,0	93,7
		c ₁	111,8	98.0	86,0	76,9	*	*	*	*	*	*	*	ſ							
		c_1 c_2	116,3	101,9	93,3	80.2	*	*	*	*	*	*	*								
	Mx	4	114,1	100,0	89,6	78,6	114,0	108,0	100,0	86,6	78,6	110,1	*								
	b_1	*	*	*	*	*	114,6	100,0	92,8	87,2	76,1	100,0	136,5	1							
a_6	b_2	*	*	*	*	*	132,4	115,5	107,2	104,0	78,5	119,3	131,3	1		144,3 108,3	95,6 77,4		7,4 133,5 133,5		100,0
(Mx2	*	c ₁	121,3	98,2	91,7	75,6	*	*	*	*	*	*	*	123,5	144,3			77,4		133,5	
		c ₂	125,7	101,8	99,5	79,2	*	*	*	*	*	*	*								
	Mx	¢2	123,5	100,0	95,6	77,4	123,5	107,8	100,0	95,6	77,4	109,6	*								

Out of this table we conclude that:

- in case of all graduations from factor A (method of stimulating flower fecundation) the obtained production under the impact of b_2 – Kemira is with 13.0% (a_2 – Tomato-Stim) up to 18.1% (a_3 – bumble-bees natural pollination –

Natupol) higher tha under the impact of factor b_1 –Agriplant, which determined a maximum production of 140.6 t/ha (a_2 – Tomato - Stim); - comparing the productions with Mx₁ (114.1 t/ha -100.0%), for b_1 (Agriplant) is of 105.6 t/ha – 92.6 %, while the production in b_2 (Kemira)

is of 122.4 t/ha - 107.4% and compared with b_1 (Agriplant) is of 115.9%;

- comparing the productions with Mx_2 the situation is normally different, the production in b_2 (Kemira) being of 132.4 t/ha (115.5%) higher than in b_1 (Agriplant) – 114.6 t/ha (100.0%). Comparing the productions in b_1 (Agriplant) and b_2 (Kemira) with Mx_2 – 123.5t/ha (100.0%) they are of 92.8% in b_1 and 107.2 % in b_2 ;

- under the impact of factor A (method of stimulating flower fecundation) productions obtained widely differ of both Mx_1 -114.0 t/ha and Mx_2 -123.5 t/ha;

- the highest production was obtained under the impact of a_2 -Tomato – Stim, of 132.5 t/ha (154.8% than a_1 - natural pollination, 116.2% compared with Mx₁ and 107.3% compared with Mx₂);

- productions quality under the impact of a_2 (Tomato-Stim) is the lowest 73.1% E+Ist quality production (96,8 t/ha E+I of the total 132,5 t/ha) compared with the best production in a_3 (Natupol), of 85.2%, meaning 106.7 t/ha E+Ist quality production of the total 125.3 t/ha;

- concluding, tomato production quality achieved, extra and Ist quality, is in inverse relationship to the amount realized production per hectare;

- of the four methods of stimulating flower fertilization, in terms of production quantity, the safest ranked first proved to be the method of biostimulation with Tomato-Stim (a₂), but it was on the last place in terms of production quality;

- in terms of production quality, the first place is the natural pollination with bumble-bees – Natupol (a_3), with 85.2% E+Ist quality (106.7 t/ha E+Ist quality of the total 125.3 t/ha), and the second of four methods, in terms of its quantitative production (109.9% than Mx₁);

- the method of stimulating flower fertilization a_4 (Bionex) is on the third place, both in terms of production quantity (112.7 t/ha – 98.9% than Mx₁), and production quality (74.0% \rightarrow 83.4 t/ha of the total 112.7 t/ha).

In table 3 there are presented the results of the statistical calculation, and the production differences significances as a result of the interaction between the experimental factors.

Table 3. Unilateral and experimental factors' interactions impact

	upon determi	ned growth ton	nato hybrids cultur	e in cold solariums		
Variant	Average produ	ction (kg/ha)	Relative	Difference	Significance	
	0 1	(0)	production (%)	(± t/ha)	e	
1. Unilat	eral impact of the	method of stin	nulating flower fe	ecundation upon the pr		
a2-a1	132,50	85,60	154,79	46,90	***	
a3-a1	125,30	85,60	146,38	39,70	***	
a4-a1	112,70	85,60	131,66	27,10	***	
a3-a2	125,30	132,50	94,57	-7,20	000	
a4-a2	112,70	132,50	85,06	-19,80	000	
a4-a3	112,70	125,30	89,94	-12,60	000	
	DL 5%= 2,1	8 DL 1	%= 3,30	DL 0,1%= 5,30		
	2. Unilateral in	pact of the fer	tilization system	upon the production		
b2-b1	122,43	105,63	115,91	16,80	***	
	DL 5%=	1,34 D	DL 1%= 1,84 D	L 0,1% = 2,53		
	3. Unilate	eral impact of	the hybrid upon t	the production		
c2-c1	116,28	111,78	104,03	4,50	***	
	DL 5%=	1,54 E	DL 1%= 2,08 D	L 0,1% = 2,78		
4. The impact of	interaction betwe	en different m	ethods of stimula	ting flower fecundation	1 and the same or	
	differe	nt fertilization	systems upon the	e production		
a2b1-a1b1	124,40	78,70	158,07	45,70	***	
a3b1-a1b1	114,90	78,70	146,00	36,20	***	
a4b1-a1b1	104,50	78,70	132,78	25,80	***	
a3b1-a2b1	114,90	124,40	92,36	-9,50	000	
a4b1-a2b1	104,50	124,40	84,00	-19,90	000	
a4b1-a3b1	104,50	114,90	90,95	-10,40	000	
a2b2-a1b2	140,60	92,50	152,00	48,10	***	
a3b2-a1b2	135,70	92,50	146,70	43,20	***	
a4b2-a1b2	120,90	92,50	130,70	28,40	***	
a3b2-a2b2	135,70	140,60	96,51	-4,90	00	

41.0.01.0	120.00	140.60	05.00	10.70	000
a4b2-a2b2	120,90	140,60	85,99	-19,70	000
a4b2-a3b2	120,90	135,70	89,09	-14,80	000
a2b2-a1b1	140,60	78,70	178,65	61,90	***
	DL 5% =	2,88 DI		DL 0,1% = 6,28	
5. The impact of				ating flower fecundatio	n and different
			ems upon the pro		***
a1b2- a1b1	92,50	78,70	117,53	13,80	
a2b2- a2b1	140,60	124,40	113,02	16,20	***
a3b2- a3b1	135,70	114,90	118,10	20,80	***
a4b2- a4b1	120,90	104,50	115,69	16,40	***
	DL 5% =			L 0,1% = 5,57	
6. The impact of	interaction betw			ating flower fecundatio	n and different
			oon the productio		
a1c2- a1c1	87,90	83,30	105,52	4,60	***
a2c2- a2c1	135,30	129,70	104,32	5,60	***
a3c2- a3c1	128,10	122,50	104,57	5,60	***
a4c2- a4c1	113,80	111,60	101,97	2,20	*
	DL 5% =			DL 0,1% = 5,57	
7. The impact	of interaction be		e fertilization sys roduction	stem and different hybr	ids upon the
b1c2-b1c1	107,70	103,55	104,01	4,15	***
b2c2- b2c1	124,85	120,00	104,04	4,85	***
	DL 5% =	2,17 D	L 1% = 2,94 E	DL 0,1% = 3,94	
8. The impact	of interaction be	etween differen	nt fertilization sys	stems and the same hyb	rid upon the
_		р	roduction	-	-
b2c1-b1c1	120,00	103,55	115,89	16,45	***
b2c2-b1c2	124,85	107,70	115,92	17,15	***
b2c2-b1c1	124,85	103,55	120,57	21,30	***
	DL 5% =	= 2,04 D	L 1% = 2,78 D	0L 0,1% = 3,76	
0 The impact of	tertaria attara hate	waan the come	math ad af stimul	ating flower fecundatio	n and the same
<i>7.</i> The impact of	interaction betw	veen the same	method of stimula	ating nower recundatio	n and the same
9. The impact of				on the production	n and the same
alb1c2- alb1c1					-
	fertilization s	system and dif	ferent hybrids up	on the production	
alb1c2- alb1c1	fertilization s 80,50	ystem and dif 76,90 137,70	ferent hybrids up 104,68 104,21	on the production 3,60	-
alb1c2- alb1c1 a2b2c2- a2b2c1	fertilization = 80,50 143,50 DL 5% = interaction betw	system and dif 76,90 137,70 4,35 D veen different	ferent hybrids up 104,68 104,21 L 1% = 5,89 D methods of stimu	Son the production 3,60 5,80 DL 0,1% = 7,87 lating flower fecundati	- *
alblc2- alblc1 a2b2c2- a2b2c1 10. The impact of	fertilization s 80,50 143,50 DL 5% = interaction betw fertilization	system and dif 76,90 137,70 4,35 D veen different system and the	ferent hybrids up 104,68 104,21 L 1% = 5,89 D methods of stimu e same hybrid up	on the production 3,60 5,80 DL 0,1% = 7,87 lating flower fecundati on the production	- *
alb1c2- alb1c1 a2b2c2- a2b2c1	fertilization = 80,50 143,50 DL 5% = interaction betw	system and dif 76,90 137,70 4,35 D veen different	ferent hybrids up 104,68 104,21 L 1% = 5,89 D methods of stimu	Son the production 3,60 5,80 DL 0,1% = 7,87 lating flower fecundati	- * on and the same

From the analysis of point 1 – unilateral impact of stimulating flower fecundation method, it results that the productions determined by a_2 – Tomato-Stim, a_3 –Natupol, a_4 –Bionex, are statistically assured, the differences being significant positive and very significant negative in case of a_3 – Natupol than a_2 – Tomato-Stim, a_4 –Bionex than a_2 –Tomato-Stim and a_4 –Bionex than a_3 – Natupol).

Point 2, unilateral impact of fertilization systems upon the production, shows that the production determined by b_2 (Kemira) is statistically assured, the differences being very significant positive, with an increase of 15.9%. From point 3 – unilateral impact of the hybrid upon the production – it results that the productions obtained from the two hybrids are

statistically assured, the difference significance between c_2 – Maximus F1 and c_1 – Magnus F1 being very significant positive, showing that Maximus F1 (c_1) has superior quantitative features (125.7 t/ha than 121.3t/ha for c_1 – Magnus F1 compared to Mx₂; 116.3 t/ha than 111.8 t/ha compared to Mx₁), but also qualitative, things that also resulted from table 1 and figure 1.

From points 4-10 in table 3 it results that according to bi or trifactorial combinations, the production differences' significances are very diversified, covering the full range of appraisal (very significant positive or negative, distinct significant positive or negative and significant positive or negative), which shows the intensity of experimental factors' interactions upon the obtained quantitative and qualitative productions.

CONCLUSIONS

1. The application to our experiment of multiple methods stimulate flowers' to fertilization. some of which have been considered support and increased performance of pollination, natural fertilization of the flowers, and others to replace them by outside plant intake of artificial substances, resulted in the production of differentiated unilateral or combined influence of other experimental factors (fertilization system with different types of modern fertilizers and the hybrid)

2. A unilateral decisive influence factor (method of stimulating flower fertilization) on tomato production quantitatively and qualitatively, was not carried out only by a single graduation, so graduation a₂ (Tomato-Stim stimulation) expressed its effect on the level of production quantity and graduation a₃ (natural pollination by bumble-bees - Natupol) on its quality level.

3. Under the impact of a_2 (Tomato-Stim) we obtained the highest tomato production in the experiment, of 132.5 t/ha (154.8% than a_1 – natural pollination), on the second place being the production determined by a_3 (natural pollination by bumble-bees – Natupol), of 125.3 t/ha (146.4% than a_1 – natural pollination), being followed by the productions in a_4 (biostimulation with Bionex) and last a_1 (natural pollination).

4. Considering the quality of obtained productions we can an occurrence of the inverse effect, the largest productions under the influence of a_2 (Tomato-Stim), of 132.5 t/ha, corresponds to the lowest rate of production of extra and Ist quality, of 73.1% of the total production (108.0% and 101 .3% compared to Mx₁ respectively Mx₂).

5. The largest share of production of extra and Ist quality is recorded under the impact of graduation a_3 (Natupol), of 85.2% - 106.7 t/ha of the total 125.3 t /ha (119.1% and 111.6% compared to Mx₁ respectively Mx₂), being followed by 83.6% - 71.6 t/ha in a_1 (natural pollination) and 74.0% - 83.4 t/ha in a_4 (biostimulation with Bionex).

6. Hierarchy of production levels achieved in terms of quality with top filling (I and II) under the impact of a_3 (natural pollination by bumblebees - Natupol) and a_1 (natural pollination), fertilization stimulation involving the naturally pollinated flowers, is explained by the influence exerted by the aforementioned phenomenon of fruit quality in terms of physical characteristics (size, weight, color, etc.) and the chemical and organoleptic features (taste, smell, etc.).

7. The productions obtained after using Kemira fertilization system (b_2) are with 15.5% up to 15.9% higher than those obtained after using Agriplant fertilization system (b_1):

- the average production Mx_1b_2 is of 122.4 t/ha, meaning 115.9% than Mx_1b_1 and of 115.5% than Mx_2b_1 , while Mx_1b_1 is of 105.6 t/ha, meaning 92.6% than Mx_1 and of 114.6 t/ha , meaning 92.8 %, than Mx_2 .

- The average production Mx_2b_2 is of 132.4 t/ha, meaning 107.2% than Mx_2 , and Mx_2b_1 is of 114.6 t/ha, meaning 92.8% than Mx_2 .

8. Both hybrids, Magnus F1 and Maximus F1 proved to be valuable both in terms of quantity production level achieved and the Extra and Ist quality percentage of the average yield achieved, the quality of the productions made by the two hybrids compared to the two average values of the experiment vary in the following intervals:

- Magnus F_1 (c₁) – 111.8 -121.3 t/ha, of which 86.0-91.7 t/ha E+I quality production, meaning 76.9-75.6 %;

- Maximus F_1 (c₂) – 116.3-125.7 t/ha, of which 93.3-99.5 t/ha E+I quality production, meaning 80.2-79.2%.

9. We recommend further research to strengthen the conclusions of the experiment.

REFERENCES

[1]. Horgoş, A., Oglejan, Doina., Kondor, F., Becherescu, Alexandra, 2002. On the influence of kemira-type fertilising on the quantitative and qualitative levels of tomato yields in unheated solaria, Vol. Lucrări Științifice seria B (XLV) 2002, ISSN1222-5312, București.

[2]. Horgoş A., Oglejan Doina, Bulboacă T., 2001. Studies on unheated solarium tomato yield efficientialisation. Vol. Lucrări Științifice seria B (XLIV) 2001, ISSN 1222-5312, București.

