

CARBON FOOTPRINT OF SPINACH GROWED WITH MINERAL AND BIOLOGICAL FERTILIZATION IN GREENHOUSES

Dimitar DIMITROV, Stoyan FILIPOV, Kostadin KOSTADINOV

Agricultural University - Plovdiv, AU, 12 Mendeleev Blvd, 4000, Plovdiv, Bulgaria

Corresponding author email: kostadinov8888@gmail.com

Abstract

To determine the amount of greenhouse gases during the period 2021-2024, an experiment was set up with spinach under greenhouse conditions. The following options were tested: 1. spinach chamber without fertilization - control; 2. spinach chamber with mineral fertilization - NPK; 3. spinach chamber with organic fertilization - Vitaorganic; 4. Chamber without lettuce and without fertilization. At each reading, the CO₂ concentration was additionally measured outdoors and in the polyethylene greenhouse. Readings were carried out weekly from planting to harvesting - from January to April. Under adverse weather conditions, young plants fertilized with organic fertilizer consume less CO₂, compared to that released from the soil and available in the atmosphere. As temperatures rise, they begin to consume increasingly larger amounts, with the maximum at the end of February, after which consumption decreases to on March 28. The mineral fertilization option has a higher degree of CO₂ fixation compared to organic fertilization. When entering economic maturity, the CO₂ fixation values are highest for mineral fertilization, while with organic fertilization the fixation is less.

Key words: greenhouse gases, spinach, carbon emission, mineral and biological fertilization.

INTRODUCTION

The need for sustainable agricultural practices is increasingly urgent, particularly in addressing the environmental impact of food production. Agriculture significantly contributes to greenhouse gas (GHG) emissions, with nitrogen-based fertilizers being a major source of nitrous oxide (N₂O), a potent greenhouse gas. Agricultural production is also accompanied by the release of greenhouse gases CH₄ and CO₂ during the decomposition of plant residues. Their determination and the development of technology for their reduction have also been the subject of research (Borisova et al., 2023).

Spinach, a widely cultivated leafy green, requires intensive fertilization to achieve high yields. The carbon footprint of spinach production, particularly under different fertilization strategies, has become a key focus for researchers seeking to reduce environmental impacts while maintaining agricultural productivity (Pereira et al., 2022).

Fertilization is a double-edged sword in agriculture. While it enhances crop yields, it also contributes to significant nitrogenous gas emissions (Pan et al., 2022).

The impact of different formulations of organic and biological fertilisers on greenhouse emissions is the subject of several modern studies (Kostadinova et al., 2018; Dermendzhieva et al., 2021; Borisova et al., 2022).

The emissions from synthetic nitrogen fertilizers, particularly ammonia (NH₃) and nitrous oxide (N₂O), have been extensively documented (Xu et al., 2019; Ma et al., 2021). These gases play a critical role in global warming, air quality degradation, and ecosystem disruption. The adoption of biological fertilizers-derived from organic and microbial sources-offers a promising alternative, as they can enhance soil health and reduce GHG emissions (Yang et al., 2020).

The role of nitrogen in agriculture and its environmental implications have been the subject of extensive research. It has been highlighted the necessity of addressing nitrogenous gas emissions from croplands to transition toward low-emission agriculture (Pan et al., 2022). The authors emphasized that nitrogen management is integral to reducing the carbon footprint of agricultural systems.

Similarly, have been examined 50-year trends in nitrogen use efficiency, revealing a critical

balance between crop yield enhancement and nitrogen input optimization (Lassaletta et al., 2014). Their findings underscore the need for sustainable fertilization practices to mitigate environmental impacts.

Sustainable agricultural practices, including the use of organic and mineral fertilizers in optimal rates, are a way to reduce greenhouse gas emissions (Kuncheva et al., 2024).

Synthetic fertilisers, while effective in boosting productivity, are a primary source of ammonia volatilization (Pan et al., 2016). It is provided empirical estimates of global ammonia emissions from synthetic nitrogen fertilisers, underscoring their significant contribution to atmospheric pollution (Xu et al., 2019). Complementing these findings, refined emission factors for soil-derived ammonia, it is offered a more nuanced understanding of regional and crop-specific impacts (Ma et al., 2021).

Biological fertilizers present an eco-friendly alternative to synthetic fertilizers. It is demonstrated the efficacy of combining Azolla, a nitrogen-fixing aquatic fern, with urease inhibitors to reduce ammonia volatilization in rice cultivation, Yang et al. (2020). This strategy not only mitigates emissions but also improves nitrogen use efficiency and crop yields. It is explored the role of biochar in reducing nitrogen leaching in paddy soils, noting its potential to enhance nutrient cycling while managing GHG emissions Wang et al. (2017).

Ammonia emissions are not just a local concern but have global implications for air quality and climate. Providing insights into compliance with air quality regulations, has been analyzed the costs and benefits of ammonia emission abatement in Europe (Giannakis et al., 2019). Similarly, has been discussed how controlling ammonia emissions in China could mitigate haze pollution and nitrogen deposition, though it may exacerbate acid rain issues (Liu et al., 2019).

Nitrogen emissions are intrinsically linked to soil processes. It has been explored the relationship between redox potential, soil organic matter turnover, and nutrient cycling in submerged soils, providing a comprehensive view of nitrogen dynamics (Marschner, 2021). It is highlighted that pathways such as leaching,

volatilization, and denitrification nitrogen losses from the soil-plant system have been reviewed (Cameron et al., 2013).

The interplay between carbon and nitrogen cycles is critical in understanding the environmental impacts of fertilization. The dual emissions of reactive nitrogen gases and carbon dioxide from fertilization have been examined, emphasizing the need for integrated management strategies to address these intertwined cycles (Pan et al., 2023). It has been provided a global inventory of nitric oxide emissions from soils, further elucidating the environmental footprint of agricultural practices (Davidson and Kingerlee, 1997).

The literature underscores the complexity of balancing productivity with environmental sustainability in agriculture. This study builds on these findings to compare the carbon footprint of spinach production under mineral and biological fertilization in greenhouses. By quantifying emissions and assessing mitigation strategies, the research aims to contribute to the broader goal of sustainable agriculture.

The study investigates the carbon footprint of spinach grown in greenhouses using mineral and biological fertilization, with an emphasis on understanding emissions associated with different fertilization methods.

MATERIALS AND METHODS

The experiment was conducted between 2021 and 2024 in an unheated polyethylene greenhouse at the Agricultural University of Plovdiv. The study focused on measuring greenhouse gas emissions during the autumn-winter cultivation of spinach (variety 'Matador'). The influence of organic and mineral fertilization on the CO₂ balance in the soil-plant-air system was evaluated.

Two fertilization treatments were applied: a biological fertilizer (Vitaorganic) and mineral fertilization at an active substance rate per ton of production- N_{3.75}P_{1.25}K_{4.75}. A control variant with no fertilization was also included.

CO₂ Emission Measurement Variants

CO₂ emissions were calculated based on the following measurement variants:

1. Control – CO₂ percentage in a chamber without fertilization and plants.

2. NPK fertilization – CO₂ percentage in a chamber fertilized with NPK but without plants.
3. Biological fertilization- CO₂ percentage in a chamber fertilized with bio-fertilizer but without plants.
4. NPK fertilization with plants – CO₂ percentage in a chamber fertilized with NPK, with plants.
5. Biological fertilization with plants – CO₂ percentage in a chamber fertilized with bio-fertilizer, with plants.

The experiment was set up with four replications. The experimental plot size was 3.36 m², while the measuring plots for determining CO₂ emissions were 0.25 m². Fertilization was applied during the final soil preparation. The organic fertilizer Vitaorganic was applied at a rate of 1500 kg/ha. Mineral fertilization was carried out using potassium sulfate, triple superphosphate, and ammonium nitrate, based on active substance rates: N – 312 kg/ha, P₂O₅ – 128 kg/ha, K₂O – 224.8 kg/ha.

Spinach was sown in early November in rows according to the scheme 70 + 6 X 15 cm, with a seeding rate of 15 kg/ha. The crop was cultivated following an established production technology for polyethylene greenhouse cultivation during the autumn-winter period (Aleksiev, 2007). Climate characteristics were recorded using a Meteobot weather station installed in the greenhouse.

To determine and visualize CO₂ emission values, three calculation models were developed:

1. Effect of Fertilizer Type on CO₂ Emissions from Soil Microflora

The study examined the influence of different fertilizers on CO₂ emissions from fertilized and unfertilized soils. The difference in gas emissions between the control and the fertilized variants (organic and mineral) without plants was calculated. The results are presented in Figures 1-3.

The values **X1**, displayed in the graphs, were calculated using the following formulas:

$$X1_{soil\ NPK} = C_{\%CO_2}^{contr.soil} - C_{\%CO_2}^{NPK\ fert.soil}.$$

$$X1_{soil\ BIO} = C_{\%CO_2}^{contr.soil} - C_{\%CO_2}^{BIO\ fert.soil}$$

- $X1_{soil\ NPK}$ is the displayed value of emission/absorption in chamber with NPK fertilization soil in the graphs, and $X1_{soil\ BIO}$ is the value for the BIO-fertilized variant;
- $C_{\%CO_2}^{contr.soil}$ is the percentage concentration of carbon dioxide in the chamber with control soil;
- $C_{\%CO_2}^{NPK\ fert.soil}$ and $C_{\%CO_2}^{BIO\ fert.soil}$ are the percentage concentrations of carbon dioxide in the chambers with mineral (NPK) and organic fertilization, respectively.

2. Effect of Organic and Mineral Fertilizers on CO₂ Emissions

The data presented in Figures 4-6 were obtained by comparing chambers with plants grown in differently fertilized soils. In this case, the measured CO₂ amounts in the chamber with unfertilized soil were subtracted from the CO₂ amounts in the chambers with NPK and BIO fertilization. Positive values indicate higher CO₂ absorption compared to the chamber with unfertilized plants.

The gas exchange values for the NPK variant, as shown in the graphs, were calculated using the following formula:

$$X2_{NPK\ fert.} = C_{\%CO_2}^{non-fert.soil+plant} - C_{\%CO_2}^{NPK\ fert.soil+plant}$$

where:

- $X2_{NPK\ fert.}$ is the displayed value of NPK-fertilized in the graphs
- $C_{\%CO_2}^{non-fert.soil+plant}$ is the percentage concentration of carbon dioxide in the chamber with unfertilized soil and plants planted in it.
- $C_{\%CO_2}^{NPK\ fert.soil+plant}$ is the percentage concentration of carbon dioxide in the chamber with NPK fertilized soil and plants planted in it.

The calculations for the remaining variants were performed similarly.

3. Influence of the fertilizers used (organic and mineral) on the emission of CO₂

The data presented in Figures 4-6 were obtained by comparing the chambers with plants, with differently fertilized soils. In this case, the amounts of gas in the chambers from the NPK fertilization and BIO fertilization variants were subtracted from the measured amounts of carbon dioxide in the chamber with unfertilized soil. Here too, positive values mean higher absorption of CO₂ in relation to the chamber with unfertilized plants.

The values for gas exchange in the NPK variant, plotted in the graphs, were calculated according to the formulas:

$$X3_{NPK\ fert.} = (C_{\%CO_2}^{contr\ soil} - C_{\%CO_2}^{NPK\ fert.+plant}) \times 10 \times 44,01/22,4, \text{ g/m}^3$$

where:

- $X3_{NPK\ fert.}$ is the displayed value of NPK-fertilized in the graphs
- $C_{\%CO_2}^{NPK\ fert.+plant}$ is the percentage concentration of carbon dioxide in the chamber with NPK fertilized soil and plants planted in it.

The calculations for the other variants were made similarly.

Further calculations in the tables include (Table 1):

$$X_{average}^{NPK} = \left[\sum_{09.02.2024 \text{ to } 05.04} X3_{NPK\ fert.} \right] / 9$$

$$X_{CO_2}^{NPK\ sum} = X_{average}^{NPK} \times 57 \text{ days}$$

where:

- $X_{average}^{NPK}$ is the average value of $X3_{NPK\ fert.}$ across the measured dates.
- $X_{CO_2}^{NPK\ sum}$ is the modeled CO₂ absorption for the NPK treatment over 57 days.

The calculations for the other variants are made similarly.

RESULTS AND DISCUSSIONS

The three-year study confirms that CO₂ dynamics in the soil is a complex process influenced by multiple interconnected factors, such as soil temperature, moisture, solar radiation, vegetation cover, and type of fertilization.

The graphs below present the difference in CO₂ concentration between the various experimental chambers. Positive values indicate that the soil (or plants) in the respective variant absorb CO₂, while negative values indicate emissions.

1. Influence of Fertilizer Type on CO₂ Emissions from Soil Microflora

The data presented in Figures 1-3 show that the soil temperature during the study period varied between 11°C and 19°C, with changes in depth remaining insignificant (Figure 1).

1.1. Influence of Soil Temperature on CO₂ Dynamics

The data presented in Figures 1-3 show that the soil temperature during the study period varied

between 11°C and 19°C, with changes in depth remaining insignificant (Figure 1).

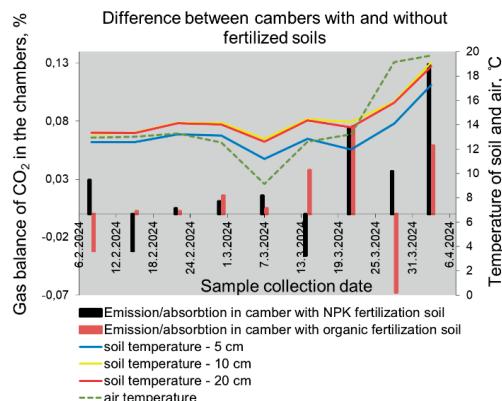


Figure 1. The temperature dependence of CO₂ dynamics in abiotic experimental chambers

The analysis of the measured CO₂ concentrations allows for an assessment of the impact of key agro-climatic factors on the soil CO₂ balance. For both fertilization methods, there is a tendency for CO₂ emissions to decrease as soil temperature rises. This highlights the importance of temperature for microbiological activity and the decomposition processes of organic matter, leading to either CO₂ emission or absorption. A particularly pronounced absorption was recorded on April 4th, when the temperature ranged between 17-19°C. Since this variant does not include plants, the increased CO₂ uptake is likely due to enhanced microbiological activity.

A comparative analysis between mineral (NPK) and biological fertilization reveals significant differences. At higher temperatures, CO₂ absorption in the NPK chamber is twice as high as in the bio-fertilized chamber. This is likely due to the high solubility and availability of mineral fertilizers, which accelerate nutrient uptake by soil microflora.

On February 8th and March 28th, CO₂ absorption was observed in the NPK variant, while biological fertilization resulted in emissions, despite minimal temperature differences (around 2°C). At the same time, on February 15th and March 14th, under similar temperature conditions, the effect was reversed-NPK led to emissions, whereas biological fertilization resulted in CO₂

absorption. This suggests that soil temperature alone is not the sole determining factor in CO₂ dynamics.

Within the temperature range of 10°C to 20°C, an inverse relationship between temperature and CO₂ emissions was established - higher temperatures lead to reduced emissions. However, during certain periods with similar temperatures, different effects were recorded, emphasizing the importance of additional factors in regulating the soil carbon balance.

1.2. Influence of Soil Moisture on CO₂ Dynamics

Soil moisture in the upper layers varied significantly throughout the experiment, ranging between 3 and 32 l/m², depending on the sampling date and soil layer depth (Figure 2). As expected, the middle and deeper soil layers (5, 10, and 20 cm) retained higher moisture levels.

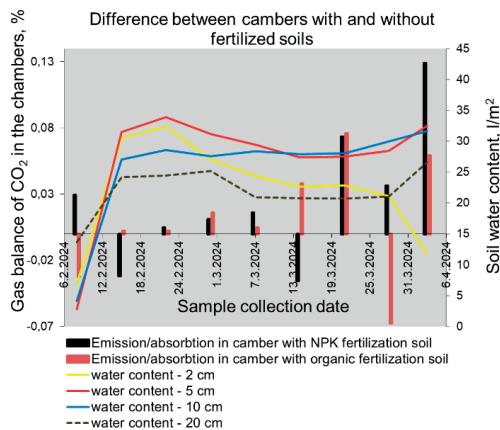


Figure 2. The effect of soil moisture on CO₂ dynamics in abiotic experimental chambers

On colder days (February 8th and March 7th), low moisture content in the upper soil layer led to increased CO₂ emissions, but only in the biologically fertilized variant. As moisture levels increased, soil permeability decreased, limiting CO₂ release. A similar trend was observed on March 28th, when moisture levels in the upper layer dropped below 21 l/m², triggering an increase in CO₂ emissions in the biologically fertilized soil.

On April 3rd, an opposite trend was observed - further reduction in soil moisture led to significant CO₂ absorption. This confirms that

the CO₂ balance depends not only on individual factors but on a combination of multiple variables.

1.3. Influence of Solar Energy on CO₂ Dynamics

During the measurement period, solar energy ranged from 0.023 to 0.151 kWh/m² (Figure 3). The data indicate that at higher soil temperatures and more intense solar radiation, CO₂ absorption increases. On days with greater solar activity, such as March 21st and April 3rd, CO₂ uptake was significantly higher.

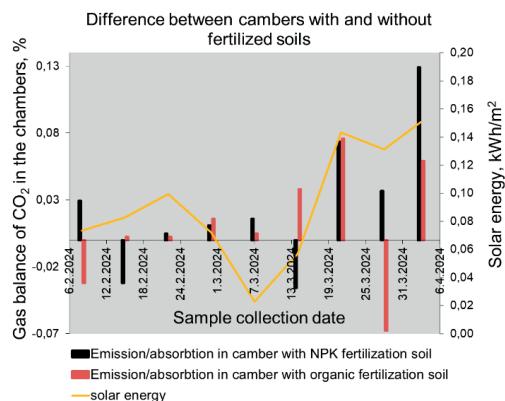


Figure 3. The radiative forcing of solar energy on CO₂ dynamics in plant-free experimental chambers

The figure illustrates that the increase in soil temperature is directly linked to the rise in solar radiation. Although the illuminated surface is small compared to the volume of the studied soil, the primary factor influencing CO₂ absorption appears to be soil temperature.

2. Influence of the applied fertilizers (organic and mineral) on CO₂ emissions

The analysis of the impact of the applied fertilizer on CO₂ levels reveals a distinct difference (Figures 4, 5, and 6). Most measurements indicate that higher amounts of CO₂ are released in chambers with mineral and organic fertilization.

This indicates that the application of mineral and organic fertilizers at the specified rates leads to increased CO₂ emissions. This effect is most pronounced during the first two measurements on February 8 and February 15, when the plants were still in their early growth stages. Soil moisture (Figure 5) does not appear to have a significant influence, as the difference

in gas emissions between mineral and organic fertilization remains consistent regardless of low or high moisture levels.

Figure 4. Influence of soil temperature on CO_2 emissions under different fertilization types

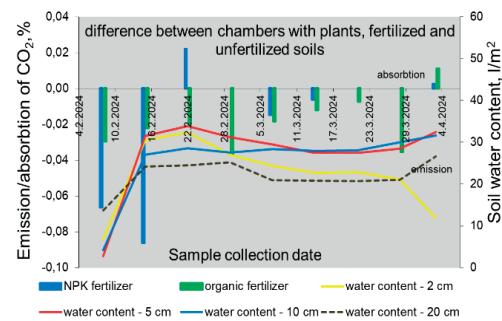


Figure 5. Influence of soil moisture on CO_2 emissions under different fertilization types

The graphs also highlight a higher CO_2 uptake in the mineral fertilization variant on February 22 and April 3. On these dates, soil moisture remained relatively stable, while temperatures varied. Among all the external factors examined, increased CO_2 absorption correlates most strongly with higher solar activity (Figure 6).

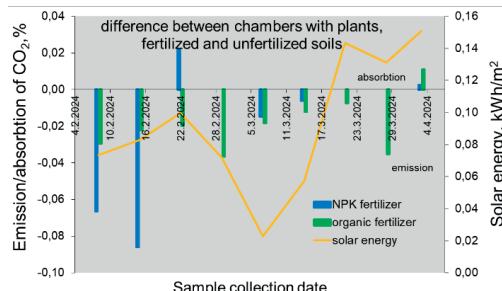


Figure 6. Influence of solar activity on CO_2 emissions under different fertilization types

The analysis suggests that at relatively lower air and soil temperatures, mineral fertilization promotes more intensive photosynthesis compared to organic fertilization. Lower temperatures slow down the mineralization of organic fertilizers, which in turn affects photosynthetic efficiency and results in less vegetative biomass formation.

Organic fertilization leads to more stable and long-term CO_2 absorption, with average values of 2.03 g/m^3 and 1.89 g/m^3 recorded in 2022 and 2023, respectively. However, in 2024, a decline to 1.13 g/m^3 was observed, likely due to climatic anomalies.

Mineral fertilization (NPK) exhibits greater fluctuations in CO_2 absorption. While the average values were relatively high in 2022 and 2023 (1.59 g/m^3 and 1.92 g/m^3), they dropped to 1.18 g/m^3 in 2024, suggesting a shorter-lasting effect.

Control samples (without fertilization) showed moderate and stable CO_2 absorption, though with lower overall values compared to fertilized treatments.

3. Influence of spinach on CO_2 emissions (difference between control soil and plant variants)

The graphs clearly illustrate that, regardless of the type of fertilizer used, CO_2 emissions are consistently lower in plant-containing variants compared to the control (unfertilized soil) in almost all measurements.

Higher air and soil temperatures, combined with increased solar activity, tend to equalize the differences between fertilized and unfertilized variants. On March 14, March 21, and April 3, the difference in CO_2 absorption was negligible.

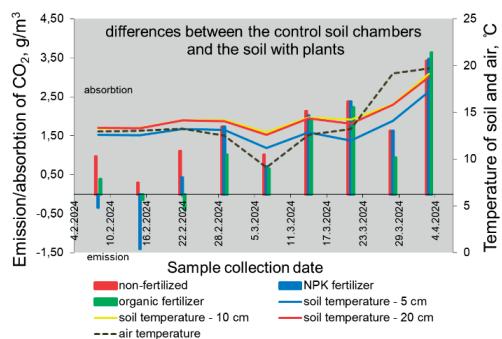


Figure 7. Influence of air and soil temperature on CO_2 emissions during plant cultivation

A temperature drop and increased cloud cover on March 7 affected photosynthesis, leading to lower carbon absorption. The decrease in air temperature was around 3°C, indicating that the primary factor behind the reduced absorption was lower solar radiation. A similar effect was observed on March 28, where despite higher temperatures, reduced solar activity resulted in lower CO₂ absorption.

An increase in soil moisture, combined with mineral fertilization during the early growth phase, led to higher carbon emissions (Figure 8).

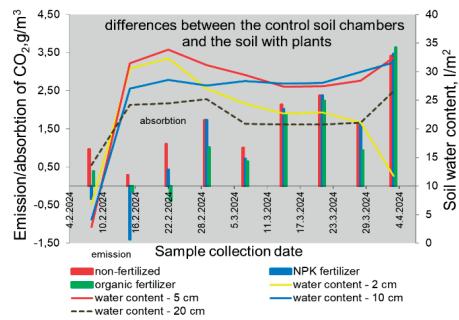


Figure 8. Influence of soil water content on CO₂ emissions during plant cultivation

This confirms the earlier observation that mineral fertilizers, when applied in the specified amounts and under conditions of relatively higher soil moisture, stimulate soil microbiota activity, potentially increasing greenhouse gas emissions.

The data show that high soil moisture correlates with increased CO₂ emissions, especially under organic fertilization. This can be attributed to the accelerated microbial decomposition of organic matter. Under optimal moisture conditions, the best balance between emissions and absorption is observed.

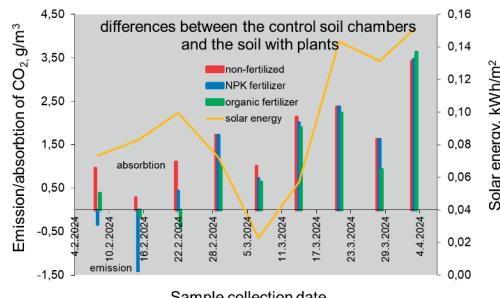


Figure 9. Influence of solar activity on CO₂ emissions during plant cultivation

4. Evaluation and Comparison of Carbon Emissions Under Different Fertilization Regimes in Winter Spinach Cultivation

Tables 1-3 compare CO₂ absorption results for similar cultivation periods of spinach over the three-year experiment. The values in the tables are calculated by subtracting the CO₂ amounts measured in the chambers with plants (for the unfertilized, NPK, and BIO variants) from those in the control soil chamber. The differences were recorded by the chromatograph in percentage terms and converted to g/m³.

Table 1. Total amount of CO₂ absorbed during the cultivation period, g/m³, 2022

2022/57 days sample collection date	Soil temperature - 10 cm	Non-fertilized	NPK fertilizer	Organic fertilizer
9.2.2022	5.9	-0.18	0.61	0.73
14.2.2022	5.8	0.21	0.04	0.33
23.2.2022	9.9	1.66	1.71	2.02
2.3.2022	8.2	0.94	0.99	1.30
9.3.2022	7.8	0.87	0.92	1.23
16.3.2022	8.8	1.18	1.23	1.54
23.3.2022	11.8	3.25	3.30	3.61
30.3.2022	16.8	2.68	2.15	3.33
5.4.2022	15.9	3.72	3.33	4.15
average value		1.59	1.59	2.03
Total amount of CO ₂ absorbed during the cultivation period	90.77	90.41	115.46	

Table 2. Total amount of CO₂ absorbed during the cultivation period, g/m³, 2023

2023/56 days sample collection date	Soil temperature - 10 cm, °C	Non-fertilized	NPK fertilizer	Organic fertilizer
12.1.2023	8.4	1.64	1.64	1.64
18.1.2023	8.0	2.12	2.12	2.12
25.1.2023	6.7	1.54	1.54	1.54
1.2.2023	6.7	1.94	1.94	1.94
8.2.2023	5.1	2.09	2.09	2.16
15.2.2023	8.3	2.11	2.14	2.28
22.2.2023	12.3	1.30	1.63	1.25
1.3.2023	10.3	1.39	1.53	1.25
8.3.2023	10.6	2.52	2.67	2.81
average value		1.85	1.92	1.89
Total amount of CO ₂ absorbed during the cultivation period	103.63	107.65	105.71	

To approximate the absorption difference between the variants, an assumption was made that plants absorb the average value of all measurements taken on the respective dates over 24 hours. This average value was then

multiplied by the number of days in the study period, yielding the total amount of gas absorbed during the cultivation cycle. The study period was 57 days in 2022 and 56 days in both 2023 and 2024.

Table 3. Total amount of CO₂ absorbed during the cultivation period, g/m³, 2024

2024/56 days sample collection date	Soil temperature - 10 cm, °C	Non-fertilized	NPK fertilizer	Organic fertilizer
8.2.2024	13.3	0.96	-0.34	0,39
15.2.2024	13.3	0.29	-1.40	-0,14
22.2.2024	14.2	1.10	0.43	-0,39
29.2.2024	14.2	1.73	1.73	1,01
7.3.2024	12.9	1.01	0.72	0.65
14.3.2024	14.5	2.13	2.01	1,89
21.3.2024	14.2	2.37	2.37	2,23
28.3.2024	15.9	1.63	1.63	0,94
3.4.2024	19.1	3.42	3.47	3,64
average value		1.63	1.18	1.13
total amount of CO ₂ absorbed during the cultivation period	91.13	66.10	63.53	

Organic fertilization resulted in more stable and long-term CO₂ absorption, with average values of 2.03 g/m³ in 2022 and 1.89 g/m³ in 2023. However, a decline was observed in 2024 (1.13 g/m³), likely due to climatic anomalies.

Mineral fertilization (NPK) exhibited greater fluctuations in absorption. While the average values were relatively high in 2022 and 2023 (1.59 g/m³ and 1.92 g/m³, respectively), they dropped to 1.18 g/m³ in 2024, suggesting a shorter-term effect. Control samples (without fertilization) demonstrated moderate and stable CO₂ absorption but with lower final values compared to the fertilized variants.

Throughout all the experimental years, a positive correlation was observed between soil temperature and CO₂ absorption levels (Table 1). The highest absorption values were recorded at temperatures above 14°C (e.g., April 3, 2024 - 19.1°C, with a maximum absorption of 3.64 g/m³ under organic fertilization). At lower temperatures (<8°C), a reduced CO₂ exchange activity was observed, likely due to slowed microbial activity.

In 2022, the lowest emissions were observed in the variant fertilized with biological fertilizer (Table 1). This is explained by the relatively

lower air and soil temperatures at the beginning of the vegetation period compared to the end of the vegetation period.

For 2023, the lowest emissions were observed in the NPK-fertilized variant, and in 2024, in the unfertilized spinach variant.

Table 4. Average absorption values of the three years (2022-2024), g/m³

Average absorption values of the three years, g/m ³		
non-fertilized	NPK fertilizer	organic fertilizer
95.17	88.05	94.90

Soil temperature is a key factor for the dynamics of CO₂ exchange – the highest absorption is observed at temperatures above 14°C. Soil moisture affects the intensity of CO₂ emissions, with excessive moisture potentially leading to increased CO₂ release. Solar radiation has a positive effect on CO₂ absorption, particularly in the presence of plants. Organic fertilization provides a more sustainable carbon balance in the soil in the long term, while mineral fertilization has a stronger but short-lived effect. Annual variations show that climatic conditions have a significant impact on CO₂ absorption, highlighting the need for adaptive agricultural practices.

These results contribute to the understanding of the mechanisms regulating carbon balance in agroecosystems and can be used to optimize microclimate management and root nutrition to reduce CO₂ emissions and increase carbon storage in the soil.

ACKNOWLEDGEMENTS

This study was conducted with funding provided by the Center for Research, Intellectual Property Protection and Technology Transfer at the Agricultural University - Plovdiv.

REFERENCES

Aleksiev, N. (2007). *Oranzheriyno zelenchukoproizvodstvo* [Greenhouse vegetable production]. Akad. izd. na Agrarniya Universitet-Plovdiv.

Borisova, D., Kostadinova, G., Petkov, G., Dospatliev, L., Ivanova, I., Dermendzhieva, D., Beev, G. (2023). Assessment of CH₄ and CO₂ Emissions from a Gas Collection System of a Regional Non-hazardous Waste Landfill, Harmanli, Bulgaria, using the Interrupted Time Series ARMA Model. *Atmosphere*, 14, 1089 <https://doi.org/10.3390/atmos14071089>

Borisova, V., G. Kostadinova, G. Petkov, D. Dermendzhieva, and G. Beev (2022). An Assessment of Two Types of Industrially Produced Municipal Green Waste Compost by Quality Control Indices. *Applied Sciences*, 12(20): 10668. <https://doi.org/10.3390/app122010668>.

Cameron, K. C., Di, H. J., & Moir, J. L. (2013). Nitrogen losses from the soil/plant system: A review. *Annals of Applied Biology*, 162. <https://doi.org/10.1111/aab.12014>

Davidson, E. A., & Kingerlee, W. (1997). A global inventory of nitric oxide emissions from soils. *Nutrient Cycling in Agroecosystems*, 48. <https://doi.org/10.1023/A:1009738715891>

Dermendzhieva, D., T. Dinev, G. Kostadinova, G. Petkov, G. Beev (2021). Agro-ecological characterization of vermicomposted sewage sludge from municipal and poultry enterprise wastewater treatment plants. *Sains Malaysiana*, 50(8), 2167-2178.

Galloway, M. M., Powelson, M. H., Sedehi, N., Wood, S. E., Millage, K. D., & Kononenko, J. A. (2014). Secondary organic aerosol formation during evaporation of droplets containing atmospheric aldehydes, amines, and ammonium sulfate. *Environmental Science & Technology*, 48. <https://doi.org/10.1021/es5044479>

Giannakis, E., Kushta, J., Bruggeman, A., & Lelieveld, J. (2019). Costs and benefits of agricultural ammonia emission abatement options for compliance with European air quality regulations. *Environmental Sciences Europe*, 31. <https://doi.org/10.1186/s12302-019-0275-0>

Kostadinova, G., D. Dermendzhieva, G. Petkov, G. Beev, K. Koev, 2018. Evaluation of wastewater quality at the inlet-outlet of the most modern wastewater treatment plant in Bulgaria. *Fresenius Environmental Bulletin*, 27(12 B): 9723-9738.

Kuncheva, G., Ginchev, G., Ivanova, I. (2024). Influence of Long-Term Mineral Fertilization on Soil Microbiota, Organic Matter Content and CO₂ Emissions. In: Chenchouni, H., et al. Recent Advancements from Aquifers to Skies in Hydrogeology, Geoecology, and Atmospheric Sciences. MedGU 2022. Advances in Science, Technology & Innovation. Springer, Cham. https://doi.org/10.1007/978-3-031-47079-0_31

Lassaletta, L., Billen, G., Grizzetti, B., Anglade, J., & Garnier, J. (2014). 50-year trends in nitrogen use efficiency of world cropping systems: The relationship between yield and nitrogen input to cropland. *Environmental Research Letters*, 9. <https://doi.org/10.1088/1748-9326/9/10/105011>

Liu, M., Huang, X., Song, Y., Tang, J., Cao, J., & Zhang, X. (2019). Ammonia emission control in China would mitigate haze pollution and nitrogen deposition, but worsen acid rain. *Proceedings of the National Academy of Sciences*, 116. <https://doi.org/10.1073/pnas.1814880116>

Ma, R., Zou, J., Han, Z., Yu, K., Wu, S., & Li, Z. (2021). Global soil-derived ammonia emissions from agricultural nitrogen fertilizer application: A refinement based on regional and crop-specific emission factors. *Global Change Biology*, 27. <https://doi.org/10.1111/gcb.15437>

Marschner, P. (2021). Processes in submerged soils - linking redox potential, soil organic matter turnover, and plants to nutrient cycling. *Plant and Soil*, 464. <https://doi.org/10.1007/s11104-021-05040-6>

Pan, B., Lam, S. K., Mosier, A., Luo, Y., & Chen, D. (2016). Ammonia volatilization from synthetic fertilizers and its mitigation strategies: A global synthesis. *Agriculture, Ecosystems & Environment*, 232. <https://doi.org/10.1016/j.agee.2016.08.019>

Pan, S. Y., He, K. H., Lin, K. T., Fan, C., & Chang, C. T. (2022). Addressing nitrogenous gases from croplands toward low-emission agriculture. *NPJ Climate and Atmospheric Science*, 5. <https://doi.org/10.1038/s41612-022-00265-3>

Pan, S.Y., He, K.H. & Liao, Y.L. Fertilization-induced reactive nitrogen gases and carbon dioxide emissions: insight to the carbon-nitrogen cycles. *Sustain Environ Res*, 33, 23 (2023). <https://doi.org/10.1186/s42834-023-00185-8>

Pereira, B. de J., Souza, J. L. M., Oliveira, R. A., Santos, D. B., & Vasconcelos, R. R. (2022). Greenhouse gas emissions and carbon footprint of collard greens, spinach, and chicory production systems in Southeast of Brazil. *Frontiers in Plant Science*, 13, 856234. <https://doi.org/10.3389/fpls.2022.856234>

Wang, Y., Liu, Y., Liu, R., Zhang, A., Yang, S., & Liu, H. (2017). Biochar amendment reduces paddy soil nitrogen leaching but increases net global warming potential in Ningxia irrigation, China. *Scientific Reports*, 7. <https://doi.org/10.1038/s41598-017-01173-w>

Xu, R., Tian, H., Pan, S., Prior, S. A., Feng, Y., & Batchelor, W. D. (2019). Global ammonia emissions from synthetic nitrogen fertilizer applications in agricultural systems: Empirical and process-based estimates and uncertainty. *Global Change Biology*, 25. <https://doi.org/10.1111/gcb.14499>

Yang, G., Ji, H., Sheng, J., Zhang, Y., Feng, Y., & Guo, Z. (2020). Combining Azolla and urease inhibitor to reduce ammonia volatilization and increase nitrogen use efficiency and grain yield of rice. *Science of the Total Environment*, 743. <https://doi.org/10.1016/j.scitotenv.2020.140799>