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Abstract  
 
Soil is a reservoir of microorganisms including microfungi who play a key role as saprotrophs, plant mutualists, 
symbionts, decomposers, pathogens and excellent bioindicators of soil quality. The diversity of soil fungi communities is 
influenced by crop protection products. This study aimed to evaluate the diversity of soil fungal community in onion 
crop. Two plant protection methods were applied - i) diatomite in three different doses: 52.5 kg ha-1 (T1), 105 kg ha-1 
(T2), and 210 kg ha-1 (T3) and ii) biological control agent Trichoderma asperellum Td85 strain (T4). Of 58 operational 
taxonomic units isolated from all treatments (including control) only 7 operational taxonomic units were found in 
common. The highest value of colonization frequency was observed in T2 (167%), followed by control (125%), T3 
(58%), T4 (50%) and T1 (42%). Results indicate that the degree of soil colonization with Trichoderma is related with 
the dose of diatomite. 
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INTRODUCTION  
 
Besides bacteria, soil fungi constitute an 
essential component of biological characteris-
tics in soil ecosystems playing a key role as 
saprotrophs, plant mutualists, symbionts, de-
composers, pathogens (Peay et al., 2016; 
Victorino et al., 2021) and being an excellent 
bioindicators of soil quality (Orgiazzi et al., 
2012). A growing number of studies show that 
conventional farming leads to lower soil quality 
and less biological activity (i.e. microbial popu-
lations and microbial respiration rate) than 
organic farming to different crops (Droogers and 
Bouma, 1996; Girvan et al., 2004; Mader et al., 
2002) even for onion crop (Knerr et al., 2020). It 
is important to reveal and understand the inte-
ractions of fungal diversity in soil when differ-
rent organic amendments are applied to select 
the best option for ecology (Swer et al., 2011).  
In European agriculture, the trend is to increase 
areas organically cultivated using biological 
means for plant protection or organic 
substances from natural sources. Trichoderma 
spp. has many roles in soil ecology such as 
suppress soil-borne pathogen fungi (Harman et 

al., 1989; Harman, 2000), increase N and P 
nutrient contents in soil, degrade nutrients 
produced by photosynthesis into a state in 
which they can be used for plant growth, 
increase in the soil enzyme activity of the 
rhizosphere soil of seedlings, expand the 
contact area between the rhizosphere and soil 
(Halifu et al., 2019), improve the rhizosphere 
microbial community structure (Elena et al., 
2015; Zhang et al., 2013). Diatomaceous earth 
(diatomite) in agriculture mitigates plant biotic 
and abiotic stresses (Camargo et al., 2017; 
Liang et al., 2015) and increases yield acting as 
a fertilizer (Pati et al., 2016). In Romania, 
onion is one of the most cultivated vegetable 
crop with 30.000 ha in 2018 
(https://www.madr.ro/horticultura/fructe-si-
legume.html). Many studies of onion crop 
targeted the arbuscular mycorrhizal fungi 
(AMF) (Bolandnazar, 2009; Charron et al., 
2001; Galván et al., 2009) but soil fungal 
communities were less addressed. Onion crop 
may also enhance soil microorganisms 
communities of other plants when cultivated in 
intercropping system (Li et al., 2020). We 
expected Trichoderma strain will supress some 
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soil fungi and a less genera will be found in the 
plot treated with it. The aim of this study was to 
determine i) the diversity of the soil fungal 
communities in onion crop and ii) if relative 
abundance of Trichoderma asperellum is 
influenced by treatments. 
 
MATERIALS AND METHODS  
 
Field experiment. The experiment was carried 
out in 2020 at the Research and Development 
Station in Vegetables Buzau, Romania. In the 
trial onion variety ʻDe Buzauʼ was seeded at 
4th March in soil with pH 8.2, 2.57% organic 
matter content and 4.3% CaCO3. Previous crop 
was dwarf bean. Onion crop was fertilized with 
366 kg ha-1 of a complete fertilizer mixture of 
20-20-0-13 N-P2O5-K2O-S. The herbicide 
Cerlit (333 g/L fluroxypyr) was applied at 0.3 L 
ha-1. Treatments employed were i) diatomite 
52.5 kg ha-1 (T1), ii) diatomite 105 kg ha-1 
(T2), iii) diatomite 210 kg ha-1 (T3), iv) 
bioinoculant Trichoderma asperellum Td85 
strain three grams of inoculated calcium 
alginate per plant (1×10⁷ ml-1) (T4) and v) not-
treated plots (control). Plots were established at 
7 m2 (1.4 m x 5 m), with four repetitions per 
treatment with a total of 20 experimental units 
in a complete randomized block design. 
Field sampling. Soil samples were collected 
from each plot at 5 cm depth with a soil 
sampling probe at the harvest time. The 
samples were placed in sterile polyethylene 
bags, transferred to the laboratory, and stored at 
low temperature (4°C) until tested. 
Isolation of fungi. Soil samples per treatment 
(each with 4 repetitions) were manually 
blended and 3 g of each soil sample repetition 
was divided into three replicates, each with 1 g, 
finally having 12 samples per treatment or 
control. Each sample was introduced into a 
sterile tube with 10 ml sterile distilled water 
and vortexed for 30 seconds at 2000 rpm. 
Samples were diluted in series (1:10 and 1:100) 
and the lowest one was dispensed in 9 cm-Petri 
dishes with potato dextrose agar (PDA) nutrient 
medium containing a mix of antibiotics 
chloramphenicol + ampicillin (0.2 mg/L) + 
tetracycline (0.2 mg/L). Each plate corresponds 
to 1 g of soil sample. Plates were incubated at 
+25°C in darkness for 7 days. Fungal colonies 
were counted and only the fungi with visible 

different morphological characteristics were 
subcultured. Eventually, when an endophyte 
was acquired in pure culture it was cultured on 
PDA, malt extract agar (MEA) and oatmeal 
agar (OA) medium for colony characterization. 
Fungal colonies were morphologically separa-
ted in morphotypes (Cosoveanu et al., 2018) 
classified according to colour and shape of my-
celium, pigmentation of medium, and morpho-
logical characteristics of asexual/sexual organs 
(Bankina et al., 2017) resulting 58 operational 
taxonomic units (OTUs). To separate OTUs by 
microscopically characters a microscope at 40x 
magnification was used. For the mycological 
collection (long-term conservation), OTUs 
isolates were maintained in glycerol (20%) and 
mineral oil at -38°C and 5°C, respectively.  
Diversity indices. Colonization frequency 
(CF%) was calculated as the total number of 
isolates of one OTU in all treatments (each 
with four repetitions and three samples per 
repetition) or per treatment divided by the total 
number of dispensed plates; where each plate 
contained 1 g of soil sample. CF% = (number 
of colonies of an OTU/total number of Petri 
dishes sampled) x 100. 
For the diversity of soil fungi, Margalef index, 
Shannon index and Simpson’s dominance 
index were used. Margalef index (Cosoveanu et 
al., 2018) measures species richness while 
Shannon index combines richness and 
evenness. The Margalef index was calculated 
using formula:  
d = (S-1)/ln N, where S is the number of OTUs 
and N is the number of isolates in the sample. 
The dominance of Simpson (Cosoveanu et al., 
2018) was calculated according to the formula:  
D = 1 - ∑ [ni (ni-1)/N(N - 1)], where ni is the 
number of isolates belonging to i OTUs and N 
is the total number of isolates.  
The Shannon diversity index was calculated 
according to the formula: 

𝐻𝐻𝐻𝐻′ =  −  �𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝
𝑆𝑆𝑆𝑆

𝑖𝑖𝑖𝑖=1

ln𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝, 

where, p is the proportion (n/N) of isolates of 
one particular OTU found (n) divided by the 
total number of isolates found (N), ln is the 
natural log, ∑ is the sum of the calculations and 
S is the number of OTUs.  
Effective number of OTUs were calculated 
according to Jost (2006) for Shannon diversity 
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index and Simpson index. The number of 
equally-common species required to give a 
particular value of an index is called the 
"effective number of species". This is the true 
diversity of the community in question. For the 
diversity indices, PAST software version 3.15 
(copyright Hammer & Harper, Natural History 
Museum, University of Oslo, Norway) was 
used. Venn diagrams were performed using the 
web-based tool InteractiVenn (Heberle et al., 
2015). 

RESULTS AND DISCUSSIONS 
 
The first morphological inspection resulted in 
484 colonies clustered in 58 OTUs.  
Only six OTUs were found with values of 
colonization frequency per one gram of soil in 
all treatments, higher than 50% while 15 OTUs 
registered values of 10% and 50%. The 
majority of soil fungi OTUs were found with 
CF < 10% per gram of soil (Figure 1). 
  

 

 
Figure 1. Mean values of colonization frequency of each OTU per 1 gram of soil in all plots (all five treatments 

including control, each with four repetitions and three replicates) 
 
Although the bioinoculant T. asperellum strain 
T85 was applied in T4 plots, the highest value 
of colonization frequency was observed in T2 
(167%), followed by not treated plots - control 
(125%), T3 (58%), T4 (50%) and T1 (42%) 
(Figure 2). Present identification does not rely 
on molecular data, therefore OTU Trichoderma 
might gather different strains and species of 
Trichoderma naturally present in the soil.  
Experimental design also might have played a 
role in the registered values as not-treated plots 
(control) was set up in two repetitions next to 
T4 plots. Yet, plots of T2 were not placed 
nearby control. 
 

 
Figure 2. Colonization frequency % of Trichoderma 

strains per gram of soil across treatments: T1-diatomite 
52 kg ha-1 ; T2- diatomite 105 kg ha-1 ; T3- diatomite 210 

kg ha-1 ; T4- T.  asperellum Td85 strain (1×10⁷ ml-1) 

OTUs number per treatment slightly varied 
with the lowest value registered for T4 (25 
OTUs) and the highest value registered for T1 
(30 OTUs). Of 58 OTUs isolated in all 

treatments, including not-treated plot (control), 
only 12% were found in common. Single OTUs 
per treatment varied from five in T4 to eight in 
T2 and control. Generally, only one OTU was 
found common for at least two treatments. The 
highest number of common OTUs between at 
least two treatments was four (Figure 3). 
Different dosages of organic compost (low 
versus high), nitrogen fertilizer and untreated 
control were found to shift the selection of 
bacterial species and their abundance (Enebe et 
al., 2020). Therefore, in this study it comes 
easy to speculate that singleton OTUs were 
isolated due to treatments applications which 
restricted their habitat.  
Control plots registered highest values 
individual counted 115 colonies, followed by 
T1 (106 colonies) and T4 (93 colonies). 
Shannon diversity index was used to indicate 
both the richness and the evenness of the soil 
fungal community being sensitive to changes in 
rare species. Results indicate the highest value 
in T3 (H = 2.99) and the lowest in T2 (H = 
2.76). Thus, it comes easy to speculate that 
diatomite has an effect on richness of fungal 
soil community, as T3 was amended with the 
highest dose of diatomite (210 kg ha-1). 
 

0

20

40

60

80

100

120

C
ol

on
iz

at
io

n 
fr

eq
ue

nc
y 

(%
)

0

100

200

Control T1 T2 T3 T4

C
ol

on
iz

at
io

n 
fr

eq
ue

nc
y 

(%
)



737

 

 
Figure 3. Venn diagram showing common OTUs among treatments: C - control; T1 - diatomite 52 kg ha-1 ; T2 - 

diatomite 105 kg ha-1; T3 - diatomite 210 kg ha-1; T4 - T.  asperellum Td85 strain (1×10⁷ ml-1) 
 
Application of large amounts of vermicompost 
and mushroom residues enhanced the 
biodiversity of soil bacterial communities in 
Leymus chinensis grasslands (Shang et al., 
2020). Converting to effective number of 
species, which is the true diversity of species, it 
can be observed that the differences between 
the values of this index are not that high (T2 = 
16 OTUs versus T3 = 20 OTUs). It is 
noteworthy to underline that T3 resulted in the 

highest diversity of fungal soil community (H = 
2.99), also having high value of evenness 
(Simpson 1-D = 0.93) and highest species 
richness index (Margalef = 6.32). Relative 
abundances of several bacterial species were 
positively correlated with increasing organic 
fertilizer in the rhizosphere soil of grapes (Wu 
et al., 2020). Lowest values for species 
richness, diversity and increased dominance 
were found in not-treated plots (Table 1).  

 
Table 1. Diversity indices per treatment: C-control; T1-diatomite 52 kg ha-1; T2-diatomite 105 kg ha-1; T3-diatomite 

210 kg ha-1; T4-T. asperellum Td85 strain (1×10⁷ ml-1) 
 C T1 T2 T3 T4 

Diversity 
indices 

Effective 
species 

Diversity 
indices 

Effective 
species 

Diversity 
indices 

Effective 
species 

Diversity 
indices 

Effective 
species 

Diversity 
indices 

Effective 
species 

Taxa_S 27 
 

29 
 

26 
 

29 
 

25 
 

Individuals 115 
 

106 
 

82 
 

84 
 

93 
 

Simpson_1-D 0.90 10.13 0.93 14.27 0.90 10.10 0.93 15.08 0.94 15.65 
Shannon_H 2.79 16.22 2.94 18.93 2.76 15.83 2.99 19.81 2.94 18.90 
Margalef 5.48 

 
6.00 

 
5.67 

 
6.32 

 
5.30 

 

 
CONCLUSIONS  
 
This study suggests that application of 
diatomite in high dose is positively correlated 
with higher diversity and evenness of soil 
fungal communities. Further analysis is to be 
considered to identify the isolated strains of 
Trichoderma and to evaluate the scarce 
colonization of soil of the bionoculant                        
T. viridae T85. 
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